Welcome to PySCF documentation!¶
PySCF is a collection of electronic structure programs powered by Python. The package aims to provide a simple, light-weight, and efficient platform for quantum chemistry calculations and code development. The program is developed with the following principles:
Easy to install, to use, to extend and to be embedded;
Minimal requirements on libraries (no Boost or MPI) and computing resources (perhaps sacrificing efficiency to reduce I/O);
90/10 Python/C (only computational hot spots are written in C);
90/10 functional/OOP (unless performance critical, functions are pure).
In addition to the core libraries, PySCF supports a rich ecosystem of plugins and external modules that, for example, provide MPI versions of some routines, additional quantum chemistry methods and analysis, interface with quantum computing toolkits etc. See Plugins.
- 1. An overview of PySCF
- 2. Version history
- 3. Installation
- 4. Code standard
- 5. Benchmark
- 6. Tutorial
- 7. Theoretical methods
- 7.1. Self-consistent field (SCF) methods
- 7.2. Density functional theory (DFT)
- 7.3. Møller-Plesset perturbation theory
- 7.4. GW method
- 7.5. Configuration interaction (CI)
- 7.6. Coupled cluster (CC)
- 7.7. Algebraic diagrammatic construction (ADC) scheme
- 7.8. Multi-configurational self-consistent field (MCSCF)
- 7.9. Time-dependent density functional theory (TDDFT)
- 7.10. Real-time time-dependent density functional theory
- 7.11. Equation-of-motion coupled cluster (EOM-CC)
- 7.12. Periodic boundary conditions
- 8. Miscellaneous
- 9. Interfaces
- 9.1.
dftd3
— DFT with D3 dispersion correction - 9.2.
geomopt
— Geometry optimization - 9.3.
dmrgscf
— DMRG and DMRG-SCF/CASSCF - 9.4.
fciqmcscf
— Full configuration interaction quantum Monte Carlo (FCIQMC) - 9.5.
cornell_shci
— Semistochastic heat-bath configuration interaction (SHCI) - 9.6.
shciscf
— Semistochastic heat bath configuration interaction (SHCI) - 9.7.
icmpspt
— Internal-contracted MPS perturbation method - 9.8.
nao
— Numerical Atomic Orbitals
- 9.1.
- 10. Main modules
- 10.1.
adc
— Algebraic diagrammatic construction (ADC) scheme - 10.2.
ao2mo
— Integral transformations - 10.3.
cc
— Coupled cluster - 10.4.
ccn
— Auto-generated coupled cluster of arbitrary order - 10.5.
ci
— Configuration interaction - 10.6.
data
— Data for constants - 10.7.
df
— Density fitting - 10.8.
dft
— Density functional theory - 10.9.
doci
— Doubly occupied configuration interaction - 10.10.
fci
— Full configuration interaction - 10.11.
grad
— Analytical nuclear gradients - 10.12.
gto
— Molecular structure and GTO basis - 10.13.
gw
— Molecular G0W0 - 10.14.
hci
— Heat-bath selected CI - 10.15.
hessian
— Analytical nuclear Hessian - 10.16.
lib
— Helper functions, parameters, and C extensions - 10.17.
lo
— Orbital localization and analysis tools - 10.18.
mcscf
— Multi-configurational self-consistent field - 10.19.
mp
— MP2 - 10.20.
mrpt
— Multi-reference perturbation theory - 10.21.
pbc
— Periodic boundary conditions - 10.22.
prop
— Molecular properties - 10.23.
qmmm
— QM/MM interface - 10.24.
rt
— Real-time time-dependent density functional theory - 10.25.
scf
— Self-consistent field methods - 10.26.
semiempirical
— Semiempirical methods - 10.27.
sgx
— Pseudo-spectral methods (COSX, PS, SN-K) - 10.28.
solvent
— Solvent methods - 10.29.
soscf
— Second order SCF solver - 10.30.
symm
– Point group symmetry and spin symmetry - 10.31.
tdscf
— TDHF and TDDFT - 10.32.
tools
— Useful tools - 10.33.
x2c
— exact-two-component approach
- 10.1.
You can also download the PDF version of this manual.