10.21.8. pbc.ci — CISD with PBCs

The pbc.ci implements the singles and doubles configuration interaction method with periodic boundary conditions. It is analogous to the ci module.

10.21.8.1. Program reference

class pyscf.pbc.ci.cisd.GCISD(mf, frozen=None, mo_coeff=None, mo_occ=None)[source]
class pyscf.pbc.ci.cisd.RCISD(mf, frozen=None, mo_coeff=None, mo_occ=None)[source]
class pyscf.pbc.ci.cisd.UCISD(mf, frozen=None, mo_coeff=None, mo_occ=None)[source]
class pyscf.pbc.ci.kcis_rhf.KCIS(mf, frozen=None, mo_coeff=None, mo_occ=None)[source]
get_diag(kshift, eris=None)

Diagonal elements of CIS Hamiltonian.

Arguments:

cis {KCIS} – A KCIS instance kshift {int} – k-shift index. A k-shift vector is an exciton momentum.

Available k-shift indices depend on the k-point mesh. For example, a 2 by 2 by 2 k-point mesh allows at most 8 k-shift values, which can be targeted by 0, 1, 2, 3, 4, 5, 6, or 7.

Keyword Arguments:
eris {_CIS_ERIS} – Depending on cis.direct, eris may

contain 4-center (cis.direct=False) or 3-center (cis.direct=True) electron repulsion integrals (default: {None})

Returns:

1D array – an array formed by diagonal elements of CIS Hamiltonian

get_frozen_mask()

Boolean mask for orbitals in k-point post-HF method.

Creates a boolean mask to remove frozen orbitals and keep other orbitals for post-HF calculations.

Args:

mp (MP2): An instantiation of an SCF or post-Hartree-Fock object.

Returns:

moidx (list of ndarray of np.bool): Boolean mask of orbitals to include.

get_kconserv_r(kshift)[source]

Get the momentum conservation array for a set of k-points.

Given k-point index m the array kconserv_r1[m] returns the index n that satisfies momentum conservation,

(k(m) - k(n) - kshift) dot a = 2npi

This is used for symmetry of 1p-1h excitation operator vector R_{m k_m}^{n k_n} is zero unless n satisfies the above.

Note that this method is adapted from kpts_helper.get_kconserv().

Arguments:

kshift {int} – index of momentum vector. It can be chosen as any of the available k-point index based on the specified kpt mesh. E.g. int from 0 to 7 can be chosen for a [2,2,2] grid.

Returns:

list – a list of k(n) corresponding to k(m) that ranges from 0 to max_k_index

get_nmo(per_kpoint=False)

Number of orbitals for k-point calculations.

Number of orbitals for use in a calculation with k-points, taking into account frozen orbitals.

Note:

If per_kpoint is False, then the number of orbitals here is equal to max(nocc) + max(nvir), where each max is done over all k-points. Otherwise the number of orbitals is returned as a list of number of orbitals at each k-point.

Args:

mp (MP2): An instantiation of an SCF or post-Hartree-Fock object. per_kpoint (bool, optional): True returns the number of orbitals at each k-point.

For a description of False, see Note.

Returns:
nmo (int, list of int): Number of orbitals. For return type, see description of arg

per_kpoint.

get_nocc(per_kpoint=False)

Number of occupied orbitals for k-point calculations.

Number of occupied orbitals for use in a calculation with k-points, taking into account frozen orbitals.

Args:

mp (MP2): An instantiation of an SCF or post-Hartree-Fock object. per_kpoint (bool, optional): True returns the number of occupied

orbitals at each k-point. False gives the max of this list.

Returns:
nocc (int, list of int): Number of occupied orbitals. For return type, see description of arg

per_kpoint.

kernel(nroots=1, eris=None, kptlist=None, **kargs)

CIS excitation energy with k-point sampling.

Arguments:

cis {KCIS} – A KCIS instance

Keyword Arguments:

nroots {int} – Number of requested excitation energies (default: {1}) eris {_CIS_ERIS} – Depending on cis.direct, eris may

contain 4-center (cis.direct=False) or 3-center (cis.direct=True) electron repulsion integrals (default: {None})

kptlist {list} – A list of indices for k-shift, i.e. the exciton momentum.

Available k-shift indices depend on the k-point mesh. For example, a 2 by 2 by 2 k-point mesh allows at most 8 k-shift values, which can be targeted by [0, 1, 2, 3, 4, 5, 6, 7]. When kptlist=None, all k-shift will be computed. (default: {None})

Returns:

tuple – A tuple of excitation energies and corresponding eigenvectors

matvec(vector, kshift, eris=None)

Compute matrix-vector product of the Hamiltonion matrix and a CIS c oefficient vector, in the space of single excitation.

Arguments:

cis {KCIS} – A KCIS instance vector {1D array} – CIS coefficient vector kshift {int} – k-shift index. A k-shift vector is an exciton momentum.

Available k-shift indices depend on the k-point mesh. For example, a 2 by 2 by 2 k-point mesh allows at most 8 k-shift values, which can be targeted by 0, 1, 2, 3, 4, 5, 6, or 7.

Keyword Arguments:
eris {_CIS_ERIS} – Depending on cis.direct, eris may

contain 4-center (cis.direct=False) or 3-center (cis.direct=True) electron repulsion integrals (default: {None})

Returns:
1D array – matrix-vector product of the Hamiltonion matrix and the

input vector.

pyscf.pbc.ci.kcis_rhf.cis_H(cis, kshift, eris=None)[source]

Build full Hamiltonian matrix in the space of single excitation, i.e. CIS Hamiltonian.

Arguments:

cis {KCIS} – A KCIS instance kshift {int} – k-shift index. A k-shift vector is an exciton momentum.

Available k-shift indices depend on the k-point mesh. For example, a 2 by 2 by 2 k-point mesh allows at most 8 k-shift values, which can be targeted by 0, 1, 2, 3, 4, 5, 6, or 7.

Keyword Arguments:
eris {_CIS_ERIS} – Depending on cis.direct, eris may

contain 4-center (cis.direct=False) or 3-center (cis.direct=True) electron repulsion integrals (default: {None})

Raises:
MemoryError: MemoryError will be raise if there is not enough space to

store the full Hamiltonian matrix, which scales as Nk^2 O^2 V^2

Returns:

2D array – the Hamiltonian matrix reshaped into (ki,i,a) by (kj,j,b)

pyscf.pbc.ci.kcis_rhf.cis_diag(cis, kshift, eris=None)[source]

Diagonal elements of CIS Hamiltonian.

Arguments:

cis {KCIS} – A KCIS instance kshift {int} – k-shift index. A k-shift vector is an exciton momentum.

Available k-shift indices depend on the k-point mesh. For example, a 2 by 2 by 2 k-point mesh allows at most 8 k-shift values, which can be targeted by 0, 1, 2, 3, 4, 5, 6, or 7.

Keyword Arguments:
eris {_CIS_ERIS} – Depending on cis.direct, eris may

contain 4-center (cis.direct=False) or 3-center (cis.direct=True) electron repulsion integrals (default: {None})

Returns:

1D array – an array formed by diagonal elements of CIS Hamiltonian

pyscf.pbc.ci.kcis_rhf.cis_matvec_singlet(cis, vector, kshift, eris=None)[source]

Compute matrix-vector product of the Hamiltonion matrix and a CIS c oefficient vector, in the space of single excitation.

Arguments:

cis {KCIS} – A KCIS instance vector {1D array} – CIS coefficient vector kshift {int} – k-shift index. A k-shift vector is an exciton momentum.

Available k-shift indices depend on the k-point mesh. For example, a 2 by 2 by 2 k-point mesh allows at most 8 k-shift values, which can be targeted by 0, 1, 2, 3, 4, 5, 6, or 7.

Keyword Arguments:
eris {_CIS_ERIS} – Depending on cis.direct, eris may

contain 4-center (cis.direct=False) or 3-center (cis.direct=True) electron repulsion integrals (default: {None})

Returns:
1D array – matrix-vector product of the Hamiltonion matrix and the

input vector.

pyscf.pbc.ci.kcis_rhf.kernel(cis, nroots=1, eris=None, kptlist=None, **kargs)[source]

CIS excitation energy with k-point sampling.

Arguments:

cis {KCIS} – A KCIS instance

Keyword Arguments:

nroots {int} – Number of requested excitation energies (default: {1}) eris {_CIS_ERIS} – Depending on cis.direct, eris may

contain 4-center (cis.direct=False) or 3-center (cis.direct=True) electron repulsion integrals (default: {None})

kptlist {list} – A list of indices for k-shift, i.e. the exciton momentum.

Available k-shift indices depend on the k-point mesh. For example, a 2 by 2 by 2 k-point mesh allows at most 8 k-shift values, which can be targeted by [0, 1, 2, 3, 4, 5, 6, 7]. When kptlist=None, all k-shift will be computed. (default: {None})

Returns:

tuple – A tuple of excitation energies and corresponding eigenvectors